1,155 research outputs found

    Transitions in coral reef accretion rates linked to intrinsic ecological shifts on turbid-zone nearshore reefs

    Get PDF
    Nearshore coral communities within turbid settings are typically perceived to have limited reef-building capacity. However, several recent studies have reported reef growth over millennial time scales within such environments and have hypothesized that depth-variable community assemblages may act as equally important controls on reef growth as they do in clear-water settings. Here, we explicitly test this idea using a newly compiled chronostratigraphic record (31 cores, 142 radiometric dates) from seven proximal (but discrete) nearshore coral reefs located along the central Great Barrier Reef (Australia). Uniquely, these reefs span distinct stages of geomorphological maturity, as reflected in their elevations below sea level. Integrated age-depth and ecological data sets indicate that contemporary coral assemblage shifts, associated with changing light availability and wave exposure as reefs shallowed, coincided with transitions in accretion rates at equivalent core depths. Reef initiation followed a regional ∼1 m drop in sea level (1200–800 calibrated yr B.P.) which would have lowered the photic floor and exposed new substrate for coral recruitment by winnowing away fine seafloor sediments. We propose that a two-way feedback mechanism exists where past growth history influences current reef morphology and ecology, ultimately driving future reef accumulation and morphological change. These findings provide the first empirical evidence that nearshore reef growth trajectories are intrinsically driven by changes in coral community structure as reefs move toward sea level, a finding of direct significance for predicting the impacts of extrinsically driven ecological change (e.g., coral-algal phase shifts) on reef growth potential within the wider coastal zone on the Great Barrier Reef

    Cycles of coral reef ‘turn-on’, rapid growth and ‘turn-off’ over the past 8,500 years: a context for understanding modern ecological states and trajectories.

    Get PDF
    This is the author's post-print version of an article published in Global Change Biology, Vol. 17, pp. 76 - 86. Copyright © Wiley-Blackwell 2011. The definitive version is available at www3.interscience.wiley.comHuman activities threaten reef ecosystems globally, forcing ecological change at rates and scales regarded as unprecedented in the Holocene. These changes are so profound that a cessation of reef accretion (reef ‘turn-off’) and net erosion of reef structures is argued by many as the ultimate and imminent trajectory. Here, we use a regional scale reef growth dataset, based on 76 core records (constrained by 211 radiometric dates) from 22 reefs along and across the inner-shelf of the Great Barrier Reef, Australia, to examine the timing of different phases of reef initiation (‘turn-on’), growth and ‘turn-off’ during the Holocene. This dataset delineates two temporally discrete episodes of reef-building over the last 8500 years: the first associated with the Holocene transgression-early highstand period [∼8.5–5.5 k calibrated years bp (cal ybp)]; the second since ∼2.3 k cal ybp. During both periods, reefs accreted rapidly to sea level before entering late evolutionary states – states naturally characterized by reduced coral cover and low accretion potential – and a clear hiatus occurs between these reef-building episodes for which no records of reef initiation exist. These transitions mimic those projected under current environmental disturbance regimes, but have been driven entirely by natural forcing factors. Our results demonstrate that, even through the late Holocene, reef health and growth has fluctuated through cycles independent of anthropogenic forcing. Consequently, degraded reef states cannot de facto be considered to automatically reflect increased anthropogenic stress. Indeed, in many cases degraded or nonaccreting reef communities may reflect past reef growth histories (as dictated by reef growth–sea level interactions) as much as contemporary environmental change. Recognizing when changes in reef condition reflect these natural ‘turn-on’– growth –‘turn-off’ cycles and how they interact with on-going human disturbance is critical for effective coral reef management and for understanding future reef ecological trajectories

    A continuum mechanics model of the plant cell wall reveals interplay between enzyme action and cell wall structure

    Get PDF
    Plant cell growth is regulated through manipulation of the cell wall network, which consists of oriented cellulose microfibrils embedded within a ground matrix incorporating pectin and hemicellulose components. There remain many unknowns as to how this manipulation occurs. Experiments have shown that cellulose reorients in cell walls as the cell expands, while recent data suggest that growth is controlled by distinct collections of hemicellulose called biomechanical hotspots, which join the cellulose molecule together. The enzymes expansin and Cel12A have both been shown to induce growth of the cell wall; however, while Cel12A’s wall-loosening action leads to a reduction in the cell wall strength, expansin’s has been shown to increase the strength of the cell wall. In contrast, members of the XTH enzyme family hydrolyse hemicellulose but do not appear to cause wall creep. This experimentally observed behaviour still awaits a full explanation. We derive and analyse a mathematical model for the effective mechanical properties of the evolving cell wall network, incorporating cellulose microfibrils, which reorient with cell growth and are linked via biomechanical hotspots made up of regions of crosslinking hemicellulose. Assuming a visco-elastic response for the cell wall and using a continuum approach, we calculate the total stress resultant of the cell wall for a given overall growth rate. By changing appropriate parameters affecting breakage rate and viscous properties, we provide evidence for the biomechanical hotspot hypothesis and develop mechanistic understanding of the growth-inducing enzymes. </p

    Assessing whether early attention of very preterm infants can be improved by an omega-3 long-chain polyunsaturated fatty acid intervention: a follow-up of a randomised controlled tria

    Get PDF
    Introduction Docosahexaenoic acid (DHA) accumulates in the frontal lobes (responsible for higher-order cognitive skills) of the fetal brain during the last trimester of pregnancy. Infants born preterm miss some of this in utero provision of DHA, and have an increased risk of suboptimal neurodevelopment. It is thought that supplementing infants born preterm with DHA may improve developmental outcomes. The aim of this follow-up is to determine whether DHA supplementation in infants born preterm can improve areas of the brain associated with frontal lobe function, namely attention and distractibility. Methods and analysis We will assess a subset of children from the N-3 (omega-3) Fatty Acids for Improvement in Respiratory Outcomes (N3RO) multicentre double-blind randomised controlled trial of DHA supplementation. Infants born <29 weeks’ completed gestation were randomised to receive an enteral emulsion containing 60 mg/kg/day of DHA or a control emulsion from within the first 3 days of enteral feeding until 36 weeks’ postmenstrual age. Children will undergo multiple measures of attention at 18 months’ corrected age. The primary outcome is the average time to be distracted when attention is focused on a toy. Secondary outcomes are other aspects of attention, and (where possible) an assessment of cognition, language and motor development with the Bayley Scales of Infant and Toddler Development, Third Edition. A minimum of 72 children will be assessed to ensure 85% power to detect an effect on the primary outcome. Families, and research personnel are blinded to group assignment. All analyses will be conducted according to the intentionto-treat principal. Ethics and dissemination All procedures were approved by the relevant institutional ethics committees prior to commencement of the study. Results will be disseminated in peer-reviewed journal publications and academic presentations. Trial registration number ACTRN12612000503820; Preresults

    Reflections on the implementation of the Gifted and Talented policy in England, 1999–2011

    Get PDF
    This paper, as part of an on-going study looking at the impact of gifted and talented policies on an inner-city school, explores the role of the local authority in implementing the various gifted and talented initiatives since 1999, when local authority gifted and talented co-ordinators were first appointed under the Excellence in Cities (DfEE, 1999) programme

    Fine-suspended sediment and water budgets for a large, seasonally dry tropical catchment: Burdekin River catchment, Queensland, Australia

    Get PDF
    The Burdekin River catchment (~130,400 km2) is a seasonally dry tropical catchment located in north-east Queensland, Australia. It is the single largest source of suspended sediment to the Great Barrier Reef (GBR). Fine sediments are a threat to ecosystems on the GBR where they contribute to elevated turbidity (reduced light), sedimentation stress, and potential impacts from the associated nutrients. Suspended sediment data collected over a 5 year period were used to construct a catchment-wide sediment source and transport budget. The Bowen River tributary was identified as the major source of end-of-river suspended sediment export, yielding an average of 530 t km−2 yr−1 during the study period. Sediment trapping within a large reservoir (1.86 million ML) and the preferential transport of clays and fine silts downstream of the structure were also examined. The data reveal that the highest clay and fine silt loads—which are of most interest to environmental managers of the GBR—are not always sourced from areas that yield the largest total suspended sediment load (i.e., all size fractions). Our results demonstrate the importance of incorporating particle size into catchment sediment budget studies undertaken to inform management decisions to reduce downstream turbidity and sedimentation. Our data on sediment source, reservoir influence, and subcatchment and catchment yields will improve understandings of sediment dynamics in other tropical catchments, particularly those located in seasonally wet-dry tropical savannah/semiarid climates. The influence of climatic variability (e.g., drought/wetter periods) on annual sediment loads within large seasonally dry tropical catchments is also demonstrated by our data
    • …
    corecore